Journal of Organometallic Chemistry, 222 (1981) 33-54 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

SILAETHENE

VIII *. GASPHASEN-PYROLYSE SI-HALOGENIERTER SILACYCLOBUTANE

N. AUNER und J. GROBE *

Eduard Zintl-Institut der Technischen Hochschule, Darmstadt (Bundesrepublik Deutschland) (Eingegangen den 19. Juni 1981)

Summary

The gasphase pyrolysis of Si-halogenated silacyclobutanes $F_2SiCH_2CH_2CH_2$ (I), $F_2Si SiF_2$ (II), $Cl_2SiCH_2CH_2CH_2$ (III), $Cl_2Si SiCl_2$ (IV), Me(F)Si- $CH_2CH_2CH_2$ (VI) and Me(Cl)SiCH_2CH_2CH_2 (VII) has been studied under varying conditions (temperature, pressure, reaction-time) and has been compared with the electron beam fragmentation in a mass spectrometer. In case of the monosilacyclobutanes the first reaction step is the cleavage of the ring system with formation of ethylene and silaethenes, which undergo different secondary reactions (head to tail, head to head recombination, HX-addition) depending on the reaction conditions. The interpretation of the pyrolysis pathways is supported by low temperature IR measurements and mass spectroscopic investigations of the starting compounds and pyrolysis products.

Zusammenfassung

Die Gasphasenpyrolyse der Si-halogenierten Silacyclobutane $F_2SiCH_2CH_2CH_2$ (I), $F_2Si SiF_2$ (II), $Cl_2SiCH_2CH_2CH_2$ (III), $Cl_2Si SiCl_2$ (IV), Me(F)-SiCH_2CH_2CH_2 (VI) und Me(Cl)SiCH_2CH_2CH_2 (VII) wird unter verschiedenen Bedingungen (Temperatur, Druck, Verweilzeit) untersucht und mit der Elektronenstoss-Fragmentierung im Massenspektrometer verglichen. Im Fall der Monosilacyclobutane besteht der erste Thermolyseschritt in der Abspaltung von Ethen unter Bildung von Silaethenen, die als Funktion der äusseren Bedingungen verschiedene Folgereaktionen (Kopf/Schwanz-, Kopf/Kopf-Rekombination. HX-Addition) eingehen. Die Deutung der Pyrolysevorgänge wird gestützt durch Tieftemperatur-IR-Messungen und die massenspektrometrische Untersuchung von Ausgangsverbindungen und Pyrolyseprodukten.

^{*} VII. Mitteilung siehe Ref. 1.

Einleitung

Die Bildung SiX-haltiger Silaethene (X = F, Cl) aus den entsprechenden Monosilacyclobutanen erfordert Pyrolysetemperaturen von 700–940°C. Das Ausmass unerwünschter Neben- und Folgereaktionen wird durch diese Bedingungen wesentlich grösser als bei der Pyrolyse des Monosilacyclobutans [2]. Wie die nachfolgend beschriebenen Untersuchungen an Pyrolysekondensaten zeigen, gelingt der Nachweis Si-halogenierter Silaethene durch Tieftemperatur-IR- und massenspektrometrische Messungen trotz dieser Schwierigkeiten.

Pyrolyse des Difluormonosilacyclobutans, $F_2SiCH_2CH_2CH_2$ (I)

Die Pyrolyse von I verläuft bei 850°C zur Hauptsache nach Gl. 1, liefert aber zusätzlich eine Reihe von Neben- und Folgeprodukten [1].

$$F_{2}SiCH_{2}CH_{2}CH_{2} \xrightarrow{a_{50}\circ_{C}} 1/2 F_{2}Si \xrightarrow{SiF_{2}} H_{2}C=CH_{2}$$
(1)
(I) (II)

Nach den Erfahrungen bei der präparativen Darstellung von $F_2Si \leq SiF_2$ (II) durch Pyrolyse von I [1] erschien für die hier geplanten spektroskopischen Untersuchungen der Silaethen-Zwischenstufe eine Optimierung der Bedingungen angeraten. Als Variable stehen die Temperatur des Pyrolyserohres und die Verweilzeit (als Funktion des Druckes) zur Verfügung. Der Einfluss der Temperatur wird bei einem Vergleich der Produktzusammensetzung zweier Pyrolysen bei 700 bzw. 940°C deutlich. Bei der tieferen Temperatur wird II nur in geringer Ausbeute gebildet, weil ein grosser Teil der Ausgangsverbindung, vor allem bei geringer Verweilzeit, das Pyrolyserohr unverändert passiert. Als weitere Produkte lassen sich Verbindungen nachweisen, die durch Ringöffnung von I oder II erklärt werden können, z.B. F₃SiCH₂CH₂CH₂CH₃, F₃SiCH₂SiF₃, F₃SiCH₂SiF₂Me u.a. Ausserdem treten in geringen Anteilen Polymere, z.B. $(F_2SiCH_2)_n$ auf. Bei 900°C nimmt der Anteil von II am Reaktionsgemisch stark zu; die Ausgangsverbindung ist praktisch nicht mehr nachzuweisen. Die höhere Temperatur führt aber auch zu einem weitergehenden Abbau der Verbindungen unter Bildung von Methylfluorsilanen Me_nSiF_{4-n} und SiF₄. Neben Ethen finden sich im Pyrolysegemisch beträchtliche Mengen Propen und Acetylen. Der relativ hohe Anteil an II (im günstigsten Fall ca. 60%) und die grosse Menge Propen sprechen für eine Konkurrenz von "Kopf/Kopf"- und "Kopf/Schwanz"-Mechanismus bei den Folgereaktionen des Difluorsilaethens. In einer Serie von Einzelexperimenten werden unter gleichen Druckverhältnissen, d.h. bei angenähert gleichen Verweilzeiten, die Pyrolysetemperaturen zwischen 600 und 970°C variiert und im Pyrolysekondensat die wichtigsten Komponenten NMR-spektroskopisch bestimmt. Dabei ergibt sich für die Bildung von II ein Maximum bei ca. 850°C. Untersucht man bei dieser Temperatur die Zusammensetzung des Kondensats als Funktion der Verweilzeit bzw. des vorgegebenen Druckes, so resultiert die maximale Ausbeute an "Kopf/Schwanz"-Verknüpfungsprodukt bei etwa 5×10^{-3} mbar. Höhere Temperaturen und längere Verweilzeiten führen zu grösseren Ausbeuten an Propen und Ethen, Anzeichen für eine zunehmende Beteiligung des "Kopf/Kopf"-Mechanismus am Reaktionsverlauf.

Fig. 1. IR-Spektren: (a) des Pyrolysekondensats von $F_2SiCH_2CH_2CH_2$ (-193°C); (b) des $F_2SiCH_2CH_2CH_2$ (-193°C).

Für die spektroskopischen Untersuchungen des Pyrolysekondensats wurden daher die Proben bei 850°C und 5×10^{-3} mbar erzeugt. Das Tieftemperatur-IR-Spektrum wurde bei etwa —193°C an einem klaren Film registriert (Fig. 1a). Die Fig. 1b zeigt das unter gleichen Bedingungen aufgenommene Spektrum von I. In Tab. 1 sind die Daten des Pyrolysekondensats denen von II gegenübergestellt.

Eine auf -160°C gebrachte Probe zeigt das gleiche Spektrum wie das Kondensat bei -193°C. Bei Erhöhung der Temperatur treten etwa ab -125°C Veränderungen im Spektrum auf, die vornehmlich auf die zunehmende Mobilität der Kondensatbestandteile beim Erweichen zurückzuführen sind. Substituenteneffekte induktiver und/oder mesomerer Art sind für die Stabilität der Silaethene also offensichtlich von geringer Bedeutung.

Die massenspektrometrische Untersuchung erfolgte an zwei verschiedenen Pyrolysekondensaten. Im ersten Fall wurde das bei 970°C erzeugte Gemisch in einer auf -196°C gekühlten Falle gesammelt und beim Auftauen vollständig und rasch in das Massenspektrometer hinein verdampft. Das Spektrum zeigt erwartungsgemäss grosse Anteile der leichtflüchtigen Produkte, vor allem Ethen und Methylfluorsilane. F₂Si=CH₂ tritt, ebenso wie folgende Si-Verbindungen, nur mit geringer relativer Häufigkeit auf: MeF₂SiCH₂SiF₃, F₃SiCH₂-CH₂CH₃, SiF₄, MeSiF₃.

Im zweiten Fall wurde das bei ca. 850°C erzeugte und in einer Kühlfalle (-196°C) gesammelte Pyrolysegemisch fraktioniert in das Massenspektrometer verdampft. Den Spektren (Fig. 2a-e) der Fraktionen abnehmender Flüchtigkeit sind die in Tab. 2 zusammengefassten Fragmentionen entnommen und

3012w, 2972m 3036w, 2986w 2974m, 2933m 3077 2938m, 2882m 2934m 2965w 2974m, 2933m 3077 2209w, 2062w 2934m 2863w 3167 3167 1646w, 1641w 1475w, 1453w 1442vs, 1402w, 1437 1381w, 1347m 1318s, 1263m 1386m, 1329s 1331 1381w, 1381 1318s, 1263m 1233w, 1201w 1055 1325m, 1281 1318s, 1263m 1233w, 1201w 1055 1226s 1200w, 1144m 1181m, 1127vs 1055 1266s 1072m 1076vs 965 930vs, 910vs 911vs 968s, 912s 965 869vs 879vs, 854vs 865 865	2974m, 2933m 3 2863w 2933m 3 1442vs, 1402w, 1 1386m, 1329s 1 1233w, 1201w 1	077w, 2972m 437m, 1401w, 331w, 1260s	3070w, 3040m 2975s 2170w, 2065w 1460m, 1408m	ν _Β , ν _{ΒS} (CH _n) ν(SiH)
1410m 1475w, 1453w 1442vs, 1402w, 1437 1381w, 1347m 1318s, 1263m 1386m, 1329s 1331 1381w, 1347m 1318s, 1263m 1386m, 1329s 1331 1325m, 1281 1318s, 1263m 1233w, 1201w 1331 1325m, 1281 1318s, 1263m 1233w, 1201w 1351 1267m 1233w, 1201w 1055 1055 1228s 1200w, 1144m 1181m, 1127vs 1055 1228s 1072m 1076w 968, 912s 955 930vs, 910vs 911vs 968s, 912s 869vs 865	1442vs, 1402w, 1 1386m, 1329s 1 1233w, 1201w	437m, 1401w, 331w, 1260s	1460m, 1408m	
1267m 1265 1200w, 1144m 1181m, 1127vs 1055 1098sh, 1070s 1072m 1076vs, 1016vs 955 1015s, 999s 988vs 968s, 912s 955 930vs, 910vs 911vs 854vs 869vs 869vs 869vs 869vs 869vs 869vs			1336w, 12748	6(CH ₂) u.a.
1015s, 999s 988vs 968s, 912s 955 1015s, 999s 988vs 968s, 912s 955 930vs, 910vs 911vs 854vs 868vs 865	1076111, 112/VS J	055m	1100s, br	ν(Si≕C) s
800ve, stuve 511ve 869ve 879ve 854ve	10 10 10 10 10 10 10 10 10 10 10 10 10 1	955s 801:	976vs, 956vs 008	γ(CH ₂)
		863s	856s	(W.370)4
829s, 812s 829vs, 817s 799w, 784m 831 720vs	799w, 784m 720vs	831s, 815s, 771s	830s, 820vs, 794vs	ν _{as} (SiC ₂) ν _« (SiC ₂)
686m 684m 768s 672 542w 527m 596	768s 527m	672m, 656w 596w, 492s	688m 544w, 420w	v _s (SiC ₂) p(CH ₂)

TABELLE 1

Fig. 2. Massenspektren: (a—e) von Fraktionen abnehmender Flüchtigkeit aus der Pyrolyse des $F_2SiCH_2CH_2CH_2$: (f) des 1,3-Disilacyclobutans $F_2Si SiF_2$.

formelmässig zugeordnet. Die Ergebnisse dieser Untersuchung lassen sich wie folgt wiedergeben:

1. Nach Entfernung der Hauptmengen Ethen, Propen und Acetylen werden in der ersten Fraktion (Fig. 2a) als Hauptbestandteile $MeSiF_3$ (Basispeak: SiF_3),

TABELLE 2

MASSENSPERTRE

*

- a/1	a	q	ల	q	Ð	ſ	Summenformel	Mögliche Struktureinheit
80	ł	I	0,4		0.2	0.5	CaHeReSia	MAR. CIVIL . CIF.
76 ·	ľ	ł	6.0	0.8	1.0	; ;		
37	l	I	6.7	01		0		2'110[12]Jol 10
. 11				2 - -	1	110	Uit41 5312	
2	1	I	11.3	5,3	3.3	4.5	CH2F5Si2	F3SICH ₂ SIF ₂
N	I	I	1.1	1.9	1.3	1,4	C ₂ H ₆ F ₄ Si ₂	MeFaSiSiFaMe
0	ł	ł	26.0	20.5	24.2	44.1	C ₂ H ₄ F ₄ Si ₂	(F ₂ SiCH ₂)
Q.	I	I	8.3	4.7	5,1	10.5	CoFaSio	(Fasic)
12	ł	I	16,6	12.6	12.5	23,2	CHFaSi	F2SICHSIF2
=	l	ł	11.4	9,8	10.0	19.7	CoHaF Sio	FSI SIF,
37	I	I	I	1	1.4	I	CiHaFasia	H(F)SI(CH_)SIF
12	1	I	1	1	1.6	1	CHAFISIA	For Sich Sik
6	I	1,8	8.3	1.3	0.1	I	CH2F,Sh	HUNSCHOST
	I	1.7	7.1	2,2	0.1	1	CHFASh	L'SICHSIE
ų,	1	-	8,8	2,3	2.1	1.8	CoHarSio:	MeSiCHSIF
							Fasio	F.SISIF
2	2.6	5.1	42.8	5,8	1.3	0.6	CoH-FSI	CH'SICHSIF
							C ₂ H ₃ F ₃ Si	H2C=CHSIF3
- <u>.</u> .		I	6'6	2.1	0.7	0.7	C ₂ H ₂ F ₃ Si	HC=CHSIFa
0	2.1	3.2	18,0	1.9	0.2	ł	C2HF3Si; CH4F2Si2	HCCSIF ₃ ;
ģ								H(F)SICH2SIF(H)
g	1	i	6.9	1.1	0.2	ı	CH2F'2SI2, C3H6F2SI	F2SICH2CH2CH2;
96	l	ł	6.6	1 4	-	2 U	- 13-11-10	
•			5			0'D	02H7F3I2	MeSICH ₂ SI(F)H ₂ Fedrardu
14	4.3	a C	:					1.2010000012

H2C=CHSIF2;	F2SI CH2 HC≡C-SIF2;	F2SI CH MeSIF(CCH)	MeSISI	FaSi	MeSiF ₂ (H)	MeSIF	$F_2Si=CH_2$	Me2SIF	Me(F)SICH	HSIF ₂ SIF ₂	DLT2 Mediansif	MoSIF	FSI=CH_	SIF SIF	SiMo			CH2F
C2H3F2SI	C ₂ HF ₂ Si	C ₃ H4FSi	C2H7Sl2	₽3SI	CH4F2SI	CH ₃ F ₂ Si	CH2F2Si	C ₂ H ₆ FSi	C2H4FSi	FL'251	CHAFSI	CHaFSi	CHAFSI	FSi	CH ₃ Si	CaHe, CHSI	C ₃ H ₃	$\tilde{cH_2F}$
10.5	17.1	ļ		10.6	1.1	9.5	16.3	5.3	0.01	0.7 10.8	3.2	5.3	4.7	100	10.5	8.4	12,6	I
12.9	5.3	1.1		15.8	1.1	16.1	16.8	3.9	0.4 11 G	9.8	2.9	6.1	3.2	100	I	6.9	12.3	I
13,7	8,6	I		44,2	3.5	41.1	21.1	6.3 6.3	12.8	13.7	3.2	4.2	4.4	100	I	4.2	10.3	I
40.7	49,6	9,2		100	13.9	100	56,2	22.4 4 7	47.5	42.1	10.3	4.4	4.6	100	ł	11.3	23,2	19,6
2.9	4,3	l		93.1	1	14.7	4,5	8'0 	24.8	7.2	I	1	I	23.7	l	I	1	I
1.9	1.8	l		100	1	6.3	2.1	6:0	13.7	2,0	ŀ	1	I	1.9	1	1	I	
93	91	87		85	82	81	80	77 75	67	99	63	29	61	47	43	42	39	33

SiF₄ und F₂Si=CH₂ nachgewiesen. Die zweite Fraktion (Fig. 2b) enthält darüber hinaus geringe Mengen MeF₂SiCH₂SiF₃, wobei der relative Anteil an F₂Si=CH₂ zunimmt. In der dritten Fraktion (Fig. 2c) findet sich ein Gemisch aus Kopf/ Schwanz-, Kopf/Kopf-Verknüpfungs- und Ringöffnungsprodukten. Bemerkenswert ist der hohe Anteil (65.2%) des Silaethens F₂Si=CH₂. In den beiden folgenden Fraktionen (Fig. 2d, e) nimmt der Anteil des leichtflüchtigen F₂Si=CH₂ wieder ab, während die Konzentration der schwerer flüchtigen Komponenten ansteigt. Der hohe Anteil an F₂Si=CH₂ ist nicht durch die Fragmentierung von II zu erklären, da das unter gleichen Bedingungen registrierte Massenspektrum das M/2-Fragment nur mit einer rel. Häufigkeit von 16.3%, den Molekülpeak iedoch mit einer Intensität von 44% enthält (Fig. 2f).

2. Der zunächst überraschende Befund der Bildung von Methylfluorsilanen Me_nSiF_{4-n} mit $n \ge 1$ lässt sich durch Reaktionen mit HF gemäss Gl. 2 und 3 erklären.

$$F_2Si=CH_2 + HF \rightarrow F_3SiMe$$
 (2)

$$F_2Si \longrightarrow SiF_2 + 2 HF \rightarrow SiF_4 + Me_2SiF_2$$
 (3)

Ausserdem kommen unter den extremen Bedingungen der Pyrolyse Disproportionierungsreaktionen, z.B. entsprechend Gl. 4 in Betracht.

$$2 \operatorname{MeSiF}_{3} \rightarrow \operatorname{SiF}_{4} + \operatorname{Me}_{2}\operatorname{SiF}_{2} \tag{4}$$

Ähnliche Spaltungen wie in Gl. 3 sind auch für das Auftreten höher molekularer methylhaltiger Si-Verbindungen, z.B. $MeF_2SiCH_2SiF_3$, verantwortlich zu machen (s. Reaktionsschema 1).

SCHEMA 1. Mechanismus zur Deutung der Pyrolysevorgänge und der massenspektrometrischen Fragmentierung von $F_2SiCH_2CH_2CH_2$.

(Fortsetzung s.S. 44)

MASSE UND M	INSPEKTR esif3 (Spa	EN VON lte h)	FRAKTIC	DIEN DES	PYROLYSE	KONDENS/	ATS VON	VI (Spalt	e a ^d , b—c ^b) SOWIE VON VII	I (Spalte f), VON Me2SiF2 (Spalte g)
ə/m	eJ	q	υ	q	e	f	192	ч	Summenformel	Mögliche Struktureinheit
214	1	I	ł	1	0.8	1	1	l	C ₅ H ₁₃ F ₃ Si ₃	CH2CH2 Me(F)SiSi(F)Me-Si(F)Me CHCH
212	ļ	ł	ł	ł	1,4	l	1	1	C ₅ H ₁ J ^F 3Si3	Me(F)SI—SI(F)Me—SI(F)Me CH———CH
197 166	4.0	11	1 1	1 [6,3 	11	1 }	i i	C4H8 ^{F3} Si3 C5H12F2Si2	Me(F) <mark>SI—SI(F)—SI(F)Me</mark> Me(F)S <mark>IOH2OH2OH2</mark> SI(F)Me
162 151	1.8 1.8	11	11	11	3,9	9,6	1	11	C4H10F2Sl2 C4H9F2Sl2	[Me(F)SICH2]2; Me2FSICHSIFMe FSI <u>CH2CH2CH2</u> SI(F)Me; CH
										Me(F)Si Si(F)Me;
137	I	ł	l	ł	10,1	18.3	ł	I	C ₃ H ₇ F ₂ Si ₂	Me(r)ar-al(r)me; meCn2raichair me CH-CH2 FSI OSI(r)Me; FSICH2CH2SI(F)Me;
133	1	1	i	1	1.1	1.2	l	I	C4H10FSl2	Mersuchsume Mesi () Si(F)Me; Me <u>siCH2 OH2</u> Si(F)Me; Me2SiCHSi(F)Me
132	0,8	ì	l	1	I	i	I	1	C ₄ H ₉ FSi ₂	MeSi DH2 CH2 FSICH.OH2OH3IMe
131	3,1	i	ł	ļ	i	ĩ	I	ł	C4H8FSi2	CH MeSi Si(F)Me; MeSI-Si(F)Me; CH CH-CH
124	3,1	۱	I	ł	I	ł	ł	}	O2H6F2Si2; C4H10F2Si	FS <mark>iCH₂CHCH2</mark> SiMe Me(F)SiSi(F)Me; MeF ₂ SiCH ₂ CH ₃
123 122	3.3 8.1	1 1	1 1	11	11	! !	11	11	C2H5F2Sl2; C4H9F2Sl C2H4F2Sl2; C4H8F2Sl	CH ₂ (F)SISI(F)Me; MeF ₂ SICH ₂ CH ₂ CH ₂ CH ₂ (F)SISI(F)CH ₂ ; CH ₂ F ₂ SICH ₂ CH ₂ CH ₂ CH ₂ (F)SISI(F)CH ₂ ; CH ₂ F ₂ SICH ₂ CH ₂ CH ₂ CH ₂
121	2.3	ł	1	ł	0,4	6.9	I	١	O ₂ H ₃ F ₂ Si ₂	FSI CH CH-CH2 CH CH-CH2

TABELLE 3

TABELLI	3.8									
a/m	e	ŋ	υ	q	Ð		19	4	Summenformel	Mögliche Struktureinheit
119	0,9	I	1	0,8	12,1	20.5	I	ł	C ₃ H ₈ FSi ₂	MeSiCH ₂ Si(F)Me CIL
117	I	ł	I	1,0	3,1	20,4	I	1	C ₃ H ₆ FSi ₂	FSI SIMe; FSI-SIMe
116	0.7	i	I	1	7.6	4.9	I	ł	C4H ₁₁ Si ₂	CH2 MeSl SI(H)Me; MeSlCH2 CH2 SI(H)Me
113	1	ł	I	ł	12,1	7.1	1	ł	C4H9Si2; C2H4F3Si	MeSi SiMe; MeSi-SiMe; GHA CHA
112	I	ł	I	1	7.6	8.8	I	t	CAH _e Sis	MeP ₂ SiCHF MeSiCHh
110	1.0	I	ł	1.7	4.0	1.5	I	l	CII4F2Si2	H(F)SiSi(F)Me
108	3.6	I	ł	0,8	8.1	3.3	ł	I	CH ₂ F ₂ Si ₂	FSISIFCH2 H
106	2.8	1	I	I	5,1	2.8	I	l	C2H7FSi2; C4II11FSi	Me(H)SiSi(F)Me; Me(F)SiCH2CH2CH3
100	0.7	I	2.5	4.4	1.6	3,4	ł	23,2	CH ₃ F ₃ Si	F ₃ SiMe
66	0.9	I	I	3.1	17.5	2.0	I	l	CH2F3Si	F ₃ SiCH ₂
97	I	1	ł	1.9	46,8	5.1	I	l	$C_2H_7F_2SI$	MeF ₂ Si(H)CII ₃
97	ł	1	3,1	2.9	9.7	13.9	13.7	ł	$C_2H_6F_2S_1$	Me ₂ SiF ₂
96	0.9	I	1	0.8	12.9	6.8	1	t	C2H5F2Si	MeCH ₂ SIF ₂
96	1.7	1	1	2.3	36.8	17.4	1	I	C ₂ H ₃ F ₂ Si	F ₂ SiCHCH ₂
93	I	ł	1.4	2.5	11,3	6,4	I	ł	C ₃ H ₈ FSi; CH4FSi ₂	Me(F)SiCII2CH3; HSiSi(F)Me;
00	6									Me2SIFCH2
00	2,3	I	1	1	1	1	I	I	C3H5F3I	Me(r)SICHCH
80	1.0	ł	100	100	26.4	9,6	I	100	F3Si	Fasi
84	3.5	ł	I	I	1	ł	I	I	C ₂ H ₄ Si ₂	CH ₂ SISICH ₂
83	3.6	I	I	I	l	ł	I	I	C ₂ H ₃ Si ₂	CH ₂ SISICH
81	2.5	I	22.0	61.6	99.66	100	100	43.2	CH ₃ F ₂ Si	MeSiF2
80	1	1	2.8	8.5	8,8	1.1	5.3	21.0	CH2F2Si	$F_2Si=CH_2$
79	5.5	1	I	2.0	5,8	6'9	I	ł	CHF ₂ Si	F2Si=CH
78	1.2	7.4	ł	1.0	55,2	90.0	I	I	C ₂ H ₇ FSi	Me ₂ Si(H)F
77	0,7	13.7	2.3	9.4	58,3	46.8	5,8	I	C ₂ H ₆ FSi	Me2SIF
	F	Ŧ		, ,	c ,	c 1		;	יי אוויזיניים לבייייויויייייייייייייייייייייייייייייי	

AND A STATE OF																															
	HSiCH2CH2CH3; HSiSiMe	SiCH2CH2CH3; SiSiMe	MeSICHCH	Γ_2SIH	$\Gamma_2 Si$	CH ₃ CF ₂	Me(F)SiH	Me2SiH	Me2Si	Si(CH ₂) ₂	SICHCH ₂	SICHCH	SICCH	CF_2H_2	CF2H CF2H	H ₃ SIF	H ₂ SiF	SIF	H ₃ SiMe	H ₂ SiMe	HSiMe	SiMe	CH ₃ CH=CH ₂ ; SICH ₂	CH2CH=CH2; SICH	$CH_2 = C = CII_2$; SIC	CH=C=CH ₂	CH=C=CH	$CII_2 = CH_2$	CH=CH ₂	CH=CH	
	C ₃ H ₈ Si; CH ₄ Si ₂	C ₃ H ₇ Si; CH ₃ Si ₂	C ₃ H ₅ Si	HF ₂ Si	$\mathbf{F}_{2}\mathbf{S}\mathbf{i}$	$C_2H_3F_2$	CH4FSi	C ₂ H ₇ Si	C ₂ H ₆ Si	C ₂ 114Si	C ₂ H ₃ Si	C ₂ 11 ₂ Si	C ₂ HSi	CH2F2	CHF2	H ₃ SIF	H2SIF	SIF	CH ₆ Si	CH ₅ Si	CH4Si	CH ₃ SI	C ₃ H ₆ ; CH ₂ Si	C ₃ II ₅ ; CHSi	C ₃ H ₄ ; CSi	C ₃ H ₃	C ₃ H ₂	C ₂ H ₄	C ₂ H ₃	C ₂ H ₂	
	1	I	1	I	13.7	I	1	I	I	I	1	I	I	I	ŀ	I	1	50.5	I	I	1	1	1	36.8	5.1	l	25.3	I	ł	I	
Colored to a first state	I	I	I	4.2	5.3	ł	I	I	I	I	1	1	I	I	I	I	I	25.2	1	1	I	1	1	I	i	I	I	I	1	I	
n hi thu an	1	I	29.2	13.8	6.1	2.0	12.3	I	I	1	I	I	1	18.4	21.3	19.1	9.5	72.1	I	1	2.1	11.6	7.2	10.5	4.5	I	28.7	I	I	1	
	1	1	0,8	27,1	9.8	8,6	15,9	I	I	ł	I	ł	1	11.5	12,9	13,6	13.5	100	1	1	2,1	10,5	11.7	14,5	6.3	1.3	31.6	1	1	l	
a Alasharan ta an ar- wa	1	1	2.0	63.2	15,3	i	10.7	1	I	1	I	1	I	0.7	I	1.0	7.4	58.4	ł	I	2.1	2,2	12.1	17.9	1.1	14.8	30,5	ì	ł	I	
	1	I	i	39.6	10.4	I	4.9	i	I	ł	ı	ł	i	I	1.8	I	I	21.1	1	I	4.7	I	5.3	15.1	1	6.4	14.2	I	1	ł	
	I	I	I	I	I	I	i	I	I	I	I	I	i	I	11.1	11.6	I	7.1	1	ł	29,5	6.5	1	I	16.9	100	6.3	i	I	1	
	17.9	17.5	1.8	2.0	8,8	4,6	3.2	14.7	8.7	4.7	3.5	3.5	3.9	2.4	2,5	2.4	1]	1.0	13.1	30,4	16.7	88.3	100	47,6	47,3	14.0	69,0	83,9	66.3	
	72	71	69	67	66	65	63	69	58	56	65	54	53	52	51	50	49	47	46	45	44	43	42	41	40	39	38	28	27	26	

ļ

 a Rasche komplette Verdampfung. b Kondensat mit abnehmender Flüchtigkeit im Hochvakuum.

-

3. Das nach Gl. 2 gebildete MeSiF₃ muss in der Produktbilanz der Silaethenmenge zugeschlagen werden. Damit wird die Spaltung von I in F₂Si=CH₂ und H₂C=CH₂ zum wichtigsten Primärschritt der Pyrolyse. Diese Folgerung wird gestützt durch die massenspektrometrische und thermolytische Fragmentierung von MeSiF₃ (Tab. 3, Spalte h). Im Massenspektrum tritt F₂Si=CH₂ durch formale Abspaltung von HF mit der überraschend hohen Intensität von 21% auf. Bei der Pyrolyse wird neben MeSiF₃ in grosser Menge Ethen, in kleinen Anteilen Propen nachgewiesen. Dieser Befund spricht für die Bildung von F₂Si=CH₂, das in Folgereaktionen entweder HF addiert oder durch Kopf/Kopf-Verknüpfung zu 1,2-Disilacyclobutan zur Ethenquelle wird. Das Kopf/Schwanz-Produkt II wird nicht beobachtet. Für die Zusammensetzung des Pyrolysegemisches ist also das Verhältnis von Silaethen zu Fluorwasserstoff ausschlaggebend. Ein Überschuss an F₂Si=CH₂ führt zu II und in geringem Umfang zum 1,2-Disilacyclobutan, vergleichbare Mengen der beiden Komponenten favorisieren die HF-Addition zum F₃SiMe und HF-Spaltungsreaktionen.

entities and the second state of the second second

Die vorliegenden Informationen: (a) Bildung von II durch Thermolyse von I in etwa 60% iger Ausbeute, (b) vergleichende IR-Untersuchung des Pyrolysekondensats zwischen —193 und —80°C, und (c) Nachweis von $F_2Si=CH_2$ in den Massenspektren von I und MeSiF₃ sowie im Pyrolysekondensat lassen sich im Reaktionsschema 1 zusammenfassen.

Die Pyrolyse von II führt qualitativ zu den gleichen Produkten wie die von I. Für das gebildete Ethen ist hier die Kopf/Kopf-Kombination der Silaethen-Zwischenstufe verantwortlich. Die Reaktion erfordert fast 300°C höhere Temperaturen als im Fall von I, so dass kompliziertere Produktgemische resultieren.

Pyrolyse des Dichlormonosilacyclobutans, Cl₂SiCH₂CH₂CH₂ (III)

Die Pyrolysen von III wurden im Bereich zwischen 625 und 940°C durchgeführt. Unter den günstigsten Reaktionsbedingungen (880°C/5 × 10⁻³ mbar) fällt das Tetrachlor-1,3-disilacyclobutan (IV) nur in einer Ausbeute von 43% an. Als weiteres Kopf/Schwanz-Verknüpfungsprodukt entsteht das 1,3,5-Trisilacyclohexan (Cl_2SiCH_2)₃ (V). Die Gesamtausbeute an Kopf/Schwanz-Produkten bewegt sich zwischen 40 und 60%. Als Konkurrenzreaktionen kommen die HCl-Addition und die Kopf/Kopf-Kombination des $Cl_2Si=CH_2$ in Frage. Hinsichtlich der Temperatur- und Druckeinflüsse auf das Pyrolyseergebnis sind starke Parallelen zu den Befunden für $F_2Si=CH_2$ festzustellen.

Das IR—Spektrum eines bei $880^{\circ}C/5 \times 10^{-3}$ mbar erzeugten und bei — $193^{\circ}C$ kondensierten Gemisches ist in Fig. 3a wiedergegeben und dem Spektrum von III (Fig. 3b) gegenübergestellt. Die Absorptionen sind in Tab. 1 zusammengefasst und versuchsweise zugeordnet. Ergänzt wurde diese Untersuchung durch die massenspektrometrische Überprüfung eines Pyrolysekondensats (Spektrum der Fig. 4). Aus der Zuordnung und Intensität der Massenpeaks lassen sich folgende Aussagen ableiten:

(a) Das Gemisch enthält noch unzersetztes Dichlormonosilacyclobutan, daneber aber in erheblicher Menge Verbindungen, die sinnvoll nur über die Silaethen-Zwischenstufe erklärt werden können. Der Basispeak des Spektrums mit m/e =133 ist dem Fragment SiCl₃ zuzuordnen, das durch Abspaltung einer Methylgruppe aus CH₃SiCl₃ gebildet wird. Methyltrichlorsilan ist hier offensichtlich

Fig. 3. IR-Spektren: (a) des Pyrolysekondensats von Cl₂SiCH₂CH₂CH₂CH₂(-193°C); (b) des Cl₂SiCH₂CH₂CH₂CH₂ (--193°C).

das wichtigste Folgeprodukt des $Cl_2Si=CH_2$, da die Addition von HCl (57% rel. Häufigkeit) gegenüber allen anderen Folgereaktionen bevorzugt sein dürfte. Dies macht verständlich, dass der Molekülpeak des Silaethens im Pyrolysegemisch nur noch mit einer Häufigkeit von ca. 6% auftritt. Ausser dem SiCl₃ sind auch die Fragmente Cl_2SiCH_3 und SiCl₂ mit 35% bzw. 21% als Folgeprodukte des Silaethens in Rechnung zu stellen.

(b) Tetrachlordisilacyclobutane als "Kopf/Kopf"- und/oder "Kopf/Schwanz"-Additionsprodukte sind im Gegensatz zu einer in präparativem Massstab durchgeführten Pyrolyse nur in geringer Konzentration im Produktgemisch enthalten. Die Verdampfung des $Cl_2Si=CH_2$ und seines leicht flüchtigen Folge-

Fig. 4. Massenspektrum des Pyrolysekondensats von Cl₂SiCH₂CH₂CH₂.

produkts Cl₃SiCH₃ erfolgt schon bei so tiefer Temperatur, dass die Bildung des Dimeren nur in der letzten Auftau- und Verdampfungsphase von Bedeutung ist.

Eine gute Stütze erfährt diese Interpretation der Folgereaktionen des Dichlorsilaethens durch das Massenspektrum der Ausgangsverbindung, in dem das Bruchstück SiCl₃ nur mit geringer Intensität (4.1%) auftritt und Cl₂Si=CH₂ zum Basispeak wird. Bei Pyrolysen von III in präparativem Massstab wird Methyltrichlorsilan in wesentlich höheren Anteilen (je nach Bedingungen zwischen 10 und 30%) gefunden und reduziert dann die Ausbeute an Disilacyclobutan. Auch dieser Befund bestätigt, dass MeSiCl₃ sinnvoll nur als Folgeprodukt des $Cl_2Si=CH_2$ zu deuten ist.

Die Pyrolyse halogenhaltiger Monosilacyclobutane erhält durch die unvermeidliche Bildung der stabilen Halogenwasserstoffe also eine spezifische Prägung, da das X₂Si=CH₂ unter den möglichen Partnern verständlicherweise HX bevorzugt.

Analoge Ergebnisse finden wir bei der massenspektrometrischen und pyrolytischen Fragmentierung von IV. Das Massenspektrum zeigt den M^{+} -Peak in einer überraschend hohen Intensität von 92% (m/e = 224), während das Silaethenfragment $[Cl_2Si=CH_2]^+$ (m/e = 112) lediglich eine Häufigkeit von 11% aufweist. IV fragmentiert in erwarteter Weise unter Abspaltung von Cl, CH₂ und SiCl₂. Wegen der zur vollständigen Pyrolyse von IV notwendigen Temperatur von 1100–1200°C treten in der Zusammensetzung des Produktgemisches gegenüber der Pyrolyse von III Unterschiede auf; vor allem tritt die Ausbeute an $Cl_2Si=CH_2$ gegenüber der Bildung kleinerer Moleküle wie HCl, H_2 , C_2H_4 und CH₃CH=CH₂ deutlich zurück. Die bei der Pyrolyse von III bzw. IV beobachteten Produkte sind im Reaktionsschema 2 wiedergegeben.

SCHEMA 2. Pyrolyseprodukte des Cl₂SiCH₂CH₂CH₂.

Pyrolyse von Methylfluor- (VI) und Methylchlorsilacyclobutan (VII)

Die Pyrolyse des Me(F)SiCH₂CH₂CH₂(VI) liefert das 1,3-Disilacyclobutanderivat Me(F)Si \bigcirc Si(F)Me (VIII) als *cis/trans*-Isomerengemisch in 75%iger Ausbeute. Im Fall der analogen Chlorverbindung VII werden unter optimalen Bedingungen Ausbeuten von 63% an Me(Cl)Si \bigcirc Si(Cl)Me (IX) erreicht. Die Ausbeute an Ethen liegt in beiden Fällen über 90%. Die wichtigste Folgereaktion der Silaethen-Zwischenstufe ist also die Kopf/Schwanz-Verknüpfung zu den 1,3-Disilacyclobutanen. In Übereinstimmung mit diesen Befunden zeigen die Massenspektren von VI und VII die Silaethene Me(F)Si=CH₂ bzw. Me(Cl)-Si=CH₂ als Basispeak.

Ein Unterschied zwischen den beiden Pyrolysen ergibt sich für den Anteil der HX-Addition (X = F, Cl) (Fig. 5a-f) an den Folgereaktionen im Pyrolysekondensat. Während die Addition von HF an Me(F)Si=CH₂ zu Me₂SiF₂ nur eine untergeordnete Rolle spielt, wird das Massenspektrum des Pyrolysekondensats von VII beherrscht vom HCl-Additionsprodukt Me₂SiCl₂ (Fig. 6). Der Basispeak (m/e = 113) resultiert aus der Abspaltung einer Methylgruppe, das zweithäufigste Fragment (m/e = 93) entspricht der Zusammensetzung Me₂SiCl. Beide Bruchstücke treten im Massenspektrum von VII nur in geringen Anteilen auf, da bei den niedrigen Drücken intermolekulare Folgereaktionen nur in sehr geringem Umfang möglich sind.

Bei der Thermolyse von VI fällt wie bei I der Austausch von Methyl- gegen Fluorsubstituenten auf. Neben Me(F)Si=CH₂ wird in überraschend hohem Anteil F₂Si=CH₂ (~10%), neben VIII das gemischte Dimere Me(F)Si \leq SiF₂ (~20%) nachgewiesen. Eine Parallele ergibt sich hier zur massenspektrometrischen Fragmentierung der Methylfluorsilane Me₂SiF₂ und MeSiF₃ (Tab. 3, Spalten g und h); in den Spektren tritt das Fragment [F₂SiCH₂]⁺ mit 5.3 bzw. 21% relativer Häufigkeit auf. Dieser Befund ist als Hinweis auf eine höhere Stabilität von F₂Si=CH₂ im Vergleich zu Me(F)Si=CH₂ zu werten.

Bei der Pyrolyse von VII werden wie bei früheren Untersuchungen [2,3] durch Fragmente mit $m/e > M^+$ HCl-Spaltungs- und Ringerweiterungsprozesse angezeigt.

Die Interpretation der Pyrolyseversuche wird gestützt durch die massenspektrometrische Fragmentierung von IX, bei der das Silaethen Me(Cl)Si=CH₂ (m/e = 92) mit etwa 17%, die Fragmente MeSiCl₂ und Me₂SiCl mit 100 bzw. 31% relativer Häufigkeit auftreten. Nach diesen Ergebnissen ist es nicht mehr überraschend, dass bei der Pyrolyse von VII in präparativem Massstab zwischen 10 und 30% Dimethyldichlorsilan anfallen.

Um die Interpretation der Befunde abzusichern und Fehldeutungen durch die mögliche Beteiligung der Methylchlorsilane Me_nSiCl_{4-n} (n = 1-3) an der pyrolytischen und massenspektrometrischen Fragmentierung auszuschliessen, wurden die Massenspektren dieser Verbindungen aufgenommen und ihre pyrolytischen und massenspektrometrischen Fragmentierung auszuschliessen, fassen:

(a) Die Massenspektren von Me_3SiCl , Me_2SiCl_2 bzw. $MeSiCl_3$ enthalten die Silaethenfragmente $[Me_2Si=CH_2]^+$, $[Me(Cl)Si=CH_2]^+$ bzw. $[Cl_2Si=CH_2]^+$ in relativen Häufigkeiten von 10.1; 1.8 bzw. 17%. Für das Verhältnis der Intensitäten von Molekülpeak und Silaethen ergeben sich die Zahlenwerte 3; 5.4 bzw.

	Naborad In Joy duile Mar						
a/m	Summenformel	a	þ	σ	q	o	sinnvolle Moiekülstruktur
184	C4H10Sl,Cl,	2.2	17.0				
169	C ₃ H ₇ Si ₂ Cl ₂	4	37.0				[Me(Cl)SiCH ₂] ₂
156	C2H6Cl2Si2: CaH InCl2Si	4.2	2.00				CISI SI(CI)Me; Me(CI)SICH2CH2SICI
149	C4H InCISIO	8	0.0				Me(CI)SI-SI(CI)Me; MeCI2SICII2CH2CH3
148	CHaClasi	2	0'0	0.11			Me(Cl)Si SiMe; Me(Cl)SiCH2 CH2 SiMe
141	CH3Cl2Sl2; C3H7Cl7Si	0.7		7.44			MeSiCl ₃
133	Clasi	7.3	15.1	001			MeCl2Si2; Cl2SiCH2CH2CH3
128	C ₂ H ₆ Cl ₂ Si	2 6	101	DOT			SIC1 ₃
127	HCl2Sl2	4.7			n. 1		Me ₂ SiCl ₂
125	C ₂ H ₃ Cl ₂ Si	6.7					Cl ₂ Si ₂ (H)
121	C4H10CISI	3.2					Cl ₂ SICH ₂ CH
120	C4H9CISI	1.8	918				MeCISICH ₂ CH ₂ CH ₃
113	CH ₃ Cl ₂ Si	100	100	6 39	001		Me2CISICH2CH; MeCISICH2CH2CH2
112	CH2Ch2Si	2.9	0	C.05	007		MeSiCl ₂
108	C ₃ H ₉ CISi	1.2		71/7			Cl ₂ SI=CH ₂
105	C ₃ H ₆ ClSi					2.82	Me ₃ SiCI
66	HCl2SI	12.0	а <i>г</i>				MeCISICH ₂ CH
98	Cl ₂ Si	3.3	-	22,4			HSICI ₂ SICI ₂

ويعطعهمهماليات والمارية والالتكرية الأعطية والكمسادية والإقاف الاراد مسالماته فالأطراء مسالاتا والرداد والمالا مسالمات المسالمان

والملابة والإعداد والارادة الإعمارية المعاولة والمرجورة فأور ومصادة والوالد المراجعا المراجع

All sealing

MASSENSPEKTREN DES PYROLYSEKONDENSATS VON VII (Spalte a), VON IX (Spalte b) SOWIE VON MeSICl3 (c), Me2SiCl2 (d) UND Me3SiCl (e); DIE MAS. SENZAHLEN SIND ATTE 35-0 BEZOCEN.

TABELLE 4

,

Me ₂ SiCl	Me(Cl)Si=CH ₂	Me(Cl)SiH	Me(CI)Si	CH ₂ (Cl)Si	MeaSi	Me ₂ Si=CH ₂	Sici	Me ₂ SiH	Me ₂ Si	CH2Cl	H2SiMe	HSiMe	SiMe	sich ₂ ; ch ₃ -ch=ch ₂	SICH; CH2-CH=CH2	sic; cH ₂ =c=cH ₂	CH=C=CH ₂	HCI	SiH ₃	$CH_2 = CH_2$	CH=CH ₂	CH≡C
100		11.7	6.8	6.6	96.3	10.1	58.0	1.6			24.0	9.2	39.4	13.1								
13.1							31.0						.4.1	3.1	1.6							
							98,3			9.5			6.8	10.0	12.6	5,3		3.2				
30.5	16.8	16.3					40.8						18,9	35.7	8.7			7.6				
57.3	3.6	22.9	11.3	3.2	16.0	2.4	54.1	18.7	2.9		10.8	2.9	22.9	26.3	16.1	3.1	14.1	11.4	18.7	41.6	39.7	28.5
C ₂ H ₆ CISi	C ₂ H ₅ CISi	CH4CISI	CH ₃ CISI	CH2CISI	C ₃ H ₉ Si	C ₃ H ₈ Si	CISI	C ₂ H ₇ Si	C ₂ H ₆ Si	CH2CI	CHSSI	CH4Si	CH ₃ Si	CH2Si; C3H6	CHSI; C ₃ H ₅	SIC: C ₃ H ₄	C ₃ H ₃	HCI	H ₃ Si	C ₂ H ₄	C ₂ H ₃	C ₂ H
33	2	6,	8	5	3	5	33	6	8	61	16	14	13	5	H	0	6	36	11	8	1	25

Fig. 5. Massenspektren: (a—e) von Fraktionen abnehmender Flüchtigkeit aus der Pyrolyse des $Me(F)SiCH_2CH_2CH_2$; (f) des 1,3-Disilacyclobutans Me(F)Si Si(F)Me.

Fig. 6. Massenspektrum des Pyrolysekondensats von Me(Cl)SiCH₂CH₂CH₂.

2.6. Die Kombination der Silaethene zu Disilacyclobutanen spielt im Massenspektrometer erwartungsgemäss keine Rolle.

(b) Bei der ¹H-NMR-Untersuchung der Pyrolyseprodukte werden neben den als Hauptbestandteilen vorliegenden Methylchlorsilanen Me₃SiCl (99%), Me₂SiCl₂ (~90%) bzw. MeSiCl₃ (~99%) sehr geringe Mengen C₂H₄, CH₄, CH₃Cl,

Fig. 7. IR-Spektren: (a) des Me(Cl)SiCH₂CH₂CH₂(-193°C); (b) des Pyrolysekondensats von Me(Cl)-SiCH₂CH₂CH₂(-193°C); (c) des Me(Cl)Si Si(Cl)Me (-193°C).

Fig. 8. IR-Spektren: (a) des Pyrolysekondensats von Me(F)SiCH₂CH₂CH₂CH₂ (-193°C); (b) des Me(F)-SiCH₂CH₂CH₂ (-193°C).

 C_2H_2 und HCl sowie leichtflüchtige SiH-haltige Verbindungen nachgewiesen. Im Fall des Me₂SiCl₂ wird in Einklang mit Ergebnissen von Fritz et al. [5] die Bildung methylenverbrückter Si-Verbindungen beobachtet. Es fehlen 1,3-Disilacyclobutane, da sie von HCl zu kettenförmigen Verbindungen gespalten werden. Aus diesen Resultaten ist zu folgern, dass die bei der Pyrolyse der Verbindungen III und VII gebildeten Methylchlorsilane die Interpretation des Pyrolyseverlaufs nicht beeinträchtigen.

In Übereinstimmung damit ergeben sich bei den IR- und massenspektrometrischen Untersuchungen der Pyrolysekondensate von VI und VII ähnliche Resultate wie im Fall von I und II. Auf eine detaillierte Darstellung wird hier verzichtet; die Daten sind in Tab. 3 und 4 wiedergegeben (s. Fig. 7 bzw. 8).

Zusammenfassend ist festzustellen, dass bei halogenierten Silaethenen im allgemeinen die Konkurrenz dreier Folgereaktionen beobachtet wird: (a) Die Kopf/Schwanz-Verknüpfung zu 1,3-Disilacyclobutanen, (b) die Addition von HX an die Si=C-Doppelbindung, (c) die Kopf/Kopf-Verknüpfung zu 1,2-Disilacyclobutanen.

Fragen der Reaktivität und Stabilität der halogenierten Silaethene werden in einer vergleichenden Darstellung zu einem späteren Zeitpunkt diskutiert [4]. 1477 Y 14194-14

Nachweis der HCl-Addition

Aus der Produktverteilung in den Pyrolysekondensaten ergibt sich die Addition von HX (X = F, Cl) als bevorzugte Folgereaktion der Silaethen-Zwischenstufe. Zur weiteren Absicherung dieses Befundes wurden zwei Copyrolyseversuche durchgeführt:

1. Copyrolyse von $Ph_2SiCH_2CH_2CH_2$ und $Ph(Cl)SiCH_2CH_2CH_2$

Eine Mischung von Ph₂SiCH₂CH₂CH₂CH₂ und Ph(Cl)SiCH₂CH₂CH₂ im molaren Verhältnis 3/1 (Gesamtmenge ca. 5 g) wird in der üblichen Weise einer Gasphasenpyrolyse unterworfen und das erhaltene Pyrolysegemisch auf seine Hauptbestandteile überprüft. Die drei durch Kombination von Ph₂Si=CH₂ und Ph(Cl)Si=CH₂ möglichen Disilacyclobutane sind im Produktgemisch weder NMR- noch massenspektrometrisch nachzuweisen. Als Hauptbestandteile einer bei 90–100°C/10⁻³ mbar erhaltenen Fraktion werden die Verbindungen Ph₂SiClMe und PhSiCl₂Me identifiziert. Bei der massenspektrometrischen Untersuchung wird neben der erwarteten Fragmentierung der beiden Verbindungen auch die Bildung der entsprechenden Silaethene Ph₂Si=CH₂ und Ph(Cl)-Si=CH₂ beobachtet, d.h. die Addition wird relativ leicht rückgängig gemacht. Die Bildung von Si=C-Spezies bei der Thermolyse von Alkylchlorsilanen wird auch von anderen Autoren zur Interpretation der Produkte postuliert [5]. Mit der HCl-Abspaltung resultieren prinzipiell zwei Wege zum Benzol, das im Massenspektrum mit hoher Intensität registriert wird, und zwar die in Mitteilung VI [6] diskutierte Serie von intramolekularen Folgereaktionen und die Si-Ph-Spaltung mit HCl. Dass intramolekulare Prozesse der Silaethen-Zwischenstufe ablaufen, wird durch die grosse Intensität des Tropyliumions (m/e = 91; 99%) dokumentiert.

2. Copyrolyse von $Vi_2SiCH_2CH_2CH_2$ und $Vi(Cl)SiCH_2CH_2CH_2$

Die analog durchgeführte Copyrolyse eines 3/1 Gemisches aus Vi₂SiCH₂CH₂-CH₂ und Vi(Cl)SiCH₂CH₂CH₂ liefert ein Substanzgemisch im Siedebereich von $50-60^{\circ}$ C/ 10^{-3} mbar, das aufgrund der NMR- und massenspektrometrischen Untersuchung die Produkte Vi₂SiClMe und ViSiCl₂Me enthält. Im übrigen gelten die gleichen Argumente wie unter 1. erläutert.

Aus dieser Untersuchung lässt sich somit folgern, dass die HCl-Addition an die Silaethen-Zwischenstufe gegenüber den intramolekularen Folgereaktionen bevorzugt ist [7]. Dies ist verständlich, wenn man die Polarität der Si=C-Doppelbindung bedenkt.

Experimentelles

Bezüglich der experimentellen Durchführung der Pyrolysen und der spektroskopischen Untersuchungen sei auf frühere Mitteilungen [2,8] verwiesen. Die Synthese der SiCl-haltigen Monosilacyclobutane III und VII ist in Mitteilung I [9], die der SiF-analogen Verbindungen I und VI in Mitteilung VII [1] beschrieben. Angaben zur Darstellung der Disilacyclobutane II, IV, VIII und IX finden sich in Mitteilung II [8] und VII [1].

Dank

Unser Dank gilt der Deutschen Forschungsgemeinschaft, dem Fonds der Chemischen Industrie sowie den Firmen Bayer AG, Dynamit Nobel AG und Wacker für die finanzielle bzw. sachliche Unterstützung unserer Untersuchungen.

Literatur

- 1 N. Auner und J. Grobe, Z. Anorg. Allg. Chem., im Druck.
- 2 N. Auner und J. Grobe, Z. Anorg. Allg. Chem., 459 (1979) 15.
- 3 N. Auner und J. Grobe, J. Organometal. Chem., 190 (1980) 129.
- 4 N. Auner und J. Grobe, in Vorbereitung.
- 5 G. Fritz und D. Ksinsik, Z. Anorg. Allg. Chem., 322 (1963) 46.
- 6 N. Auner und J. Grobe, J. Organometal. Chem., 197 (1980) 147.
- 7 N. Auner und J. Grobe, J. Organometal. Chem., 197 (1980) 13.
- 8 N. Auner und J. Grobe, J. Organometal. Chem., 188 (1980) 151.
- 9 N. Auner und J. Grobe, J. Organometal. Chem., 188 (1980) 25.